Calor y Temperatura
CALOR
Representa la cantidad de energía que un cuerpo transfiere a otro como consecuencia de una diferencia de temperatura entre ambos. El tipo de energía que se pone en juego en los fenómenos caloríficos se denomina energía térmica. El carácter energético del calor lleva consigo la posibilidad de transformarlo en trabajo mecánico. Sin embargo, la naturaleza impone ciertas limitaciones a este tipo de conversión, lo cual hace que sólo una fracción del calor disponible sea aprovechable en forma de trabajo útil.
Las ideas acerca de la naturaleza del calor han variado apreciablemente en los dos últimos siglos. La teoría del calórico o fluido tenue que situado en los poros o intersticios de la materia pasaba de los cuerpos calientes en los que supuestamente se hallaba en mayor cantidad a los cuerpos fríos, había ocupado un lugar destacado en la física desde la época de los filósofos griegos. Sin embargo, y habiendo alcanzado a finales del siglo XVIII su pleno apogeo, fue perdiendo credibilidad al no poder explicar los resultados de los experimentos que científicos tales como Benjamín Thomson (1753-1814) o Humphrey Davy (1778-1829) realizaron.
Una vieja idea tímidamente aceptada por sabios del siglo XVII como Galileo Galilei o Robert Boyle resurgió de nuevo. El propio Thompson (conde de Rumford), según sus propias palabras, aceptó la vuelta a aquellas «viejas doctrinas que sostienen que el calor no es otra cosa que un movimiento vibratorio de las partículas del cuerpo».
Las experiencias de Joule (1818-1889) y Mayer (1814-1878) sobre la conservación de la energía, apuntaban hacia el calor como una forma más de energía. El calor no sólo era capaz de aumentar la temperatura o modificar el estado físico de los cuerpos, sino que además podía moverlos y realizar un trabajo.
Las máquinas de vapor que tan espectacular desarrollo tuvieron a finales del siglo XVIII y comienzos del XIX eran buenos muestra de ello. Desde entonces las nociones de calor y energía quedaron unidas y el progreso de la física permitió, a mediados del siglo pasado, encontrar una explicación detallada para la naturaleza de esa nueva forma de energía, que se pone de manifiesto en los fenómenos caloríficos.
Calor específico
Cantidad de calor necesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado. En el Sistema Internacional de unidades, el calor específico se expresa en julios por kilogramo y kelvin; en ocasiones también se expresa en calorías por gramo y grado centígrado. El calor específico del agua es una caloría por gramo y grado centígrado, es decir, hay que suministrar una caloría a un gramo de agua para elevar su temperatura en un grado centígrado.
De acuerdo con la ley formulada por los químicos franceses Pierre Louis Dulong y Alexis Thérèse Petit, para la mayoría de los elementos sólidos, el producto de su calor específico por su masa atómica es una cantidad aproximadamente constante. Si se expande un gas mientras se le suministra calor, hacen falta más calorías para aumentar su temperatura en un grado, porque parte de la energía suministrada se consume en el trabajo de expansión. Por eso, el calor Específico a presión constante es mayor que el calor específico a volumen constante.
Transferencia de Calor
En física, proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.
TEMPERATURA
Mide la concentración de energía y es aquella propiedad física que permite asegurar si dos o más sistemas están o no en equilibrio térmico (cuando dos cuerpos están a la misma temperatura), esto quiere decir que la temperatura es la magnitud física que mide cuan caliente o cuan frío se encuentra un objeto.
La temperatura se mide en unidades llamadas grados, por medio de los termómetros, esto se refiere que para medir la temperatura utilizamos una de las magnitudes que sufre variaciones linealmente a medida que se altera la temperatura.
Temperatura es el promedio de la energía cinética de las moléculas de un cuerpo.
La relación es que la temperatura mide la concentración de energía o de velocidad promedio de las partículas y el calor energía térmica en transito.
Para una mejor explicación de esta relación lo mostraremos con un ejemplo: si ponemos un recipiente con agua representa la cantidad de calor que un cuerpo sede o absorbe en un instante dado, el nivel que esta alcanza representa su temperatura. Si la cantidad de agua, sube el nivel, esto es, si aumenta la cantidad de calor que posee el cuerpo, aumenta también su temperatura.
Otro ejemplo se nota cuando encendemos un fósforo, se logra una alta temperatura pero bajo contenido calórico.
Una olla con 10 litros de agua tibia tiene baja temperatura y un gran contenido calórico.
La temperatura es independiente de la cantidad de sustancia, el calor en cambio depende de la masa, de la temperatura y del tipo de sustancia.
Distintas Escalas de Temperatura
Las escalas de temperatura fueron desarrolladas por los científicos con el propósito de comunicar y comparar sus resultados. Las dos mas utilizadas son las Celsius y Kelvin pero también hay otras como:
Escala Centígrada:
Se le asigna el valor cero (0) a la temperatura de fusión del agua a presión normal y a 45º de latitud. El intervalo entre dichas temperaturas se divide en 100 partes, cada una de las cuales recibe el nombre de grado centígrado o grado Celsius (ºC ). Las temperaturas inferiores a la de fusión del agua resultan negativas en esta escala.
Escala Fahrenheit:
Se le da el valor de 32 a la temperatura de fusión del agua y el valor de 212 a la de ebullición del agua. El intervalo de dichas temperaturas se divide en 180 partes, cada una de las cuales se denomina grado Fahrenheit (ºF).
Escala Reaumur:
La temperatura de fusión del agua se designa por cero (0) y la ebullición del agua por 80, dividiéndose el intervalo entre ellas en 80 partes, cada una de las cuales se denomina grado réaumur (ºR). La ecuación que relaciona las diferentes escalas de temperatura es:
La escala centígrada se usa preferentemente en trabajos científicos y en los países latinos. La escala Fahrenheit es más usada popularmente en los E.E.U.U. y en Inglaterra. La escala réaumur se emplea exclusivamente en los países escandinavos. La experimentación y los razonamientos teóricos han indicado que no es posible lograr temperaturas inferiores a cierta temperatura mínima que recibe el nombre de cero absoluto. A esta temperatura la energía de las moléculas de los cuerpos tiene su menor valor posible. El cero absoluto corresponde en la escala centígrada a una temperatura de -273.16 ºC, usualmente se toma el valor de -273 ºC. Por esta y otras razones, Lord Kelvin (Sir William Thompson) propuso medir las temperaturas negativas o "bajo cero".
Escala Kelvin:
Es la escala absoluta cuyo cero coincide con el cero absoluto y cuyos grados tienen el mismo valor que los grados centígrados. En esta escala el cero absoluto corresponde a 0 ºK, la temperatura de fusión del agua corresponde a 273 ºK y la de ebullición del agua corresponde a 373ºK. La escala absoluta de Kelvin se utiliza mucho en la ciencia.
Escala Rankine:
Es la escala absoluta correspondiente al Fahrenheit, donde el punto cero corresponde a -459.7 ºF.
Representa la cantidad de energía que un cuerpo transfiere a otro como consecuencia de una diferencia de temperatura entre ambos. El tipo de energía que se pone en juego en los fenómenos caloríficos se denomina energía térmica. El carácter energético del calor lleva consigo la posibilidad de transformarlo en trabajo mecánico. Sin embargo, la naturaleza impone ciertas limitaciones a este tipo de conversión, lo cual hace que sólo una fracción del calor disponible sea aprovechable en forma de trabajo útil.
Las ideas acerca de la naturaleza del calor han variado apreciablemente en los dos últimos siglos. La teoría del calórico o fluido tenue que situado en los poros o intersticios de la materia pasaba de los cuerpos calientes en los que supuestamente se hallaba en mayor cantidad a los cuerpos fríos, había ocupado un lugar destacado en la física desde la época de los filósofos griegos. Sin embargo, y habiendo alcanzado a finales del siglo XVIII su pleno apogeo, fue perdiendo credibilidad al no poder explicar los resultados de los experimentos que científicos tales como Benjamín Thomson (1753-1814) o Humphrey Davy (1778-1829) realizaron.
combustion de carbón |
Las experiencias de Joule (1818-1889) y Mayer (1814-1878) sobre la conservación de la energía, apuntaban hacia el calor como una forma más de energía. El calor no sólo era capaz de aumentar la temperatura o modificar el estado físico de los cuerpos, sino que además podía moverlos y realizar un trabajo.
Las máquinas de vapor que tan espectacular desarrollo tuvieron a finales del siglo XVIII y comienzos del XIX eran buenos muestra de ello. Desde entonces las nociones de calor y energía quedaron unidas y el progreso de la física permitió, a mediados del siglo pasado, encontrar una explicación detallada para la naturaleza de esa nueva forma de energía, que se pone de manifiesto en los fenómenos caloríficos.
Calor específico
Cantidad de calor necesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado. En el Sistema Internacional de unidades, el calor específico se expresa en julios por kilogramo y kelvin; en ocasiones también se expresa en calorías por gramo y grado centígrado. El calor específico del agua es una caloría por gramo y grado centígrado, es decir, hay que suministrar una caloría a un gramo de agua para elevar su temperatura en un grado centígrado.
De acuerdo con la ley formulada por los químicos franceses Pierre Louis Dulong y Alexis Thérèse Petit, para la mayoría de los elementos sólidos, el producto de su calor específico por su masa atómica es una cantidad aproximadamente constante. Si se expande un gas mientras se le suministra calor, hacen falta más calorías para aumentar su temperatura en un grado, porque parte de la energía suministrada se consume en el trabajo de expansión. Por eso, el calor Específico a presión constante es mayor que el calor específico a volumen constante.
Transferencia de Calor
En física, proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.
TEMPERATURA
Mide la concentración de energía y es aquella propiedad física que permite asegurar si dos o más sistemas están o no en equilibrio térmico (cuando dos cuerpos están a la misma temperatura), esto quiere decir que la temperatura es la magnitud física que mide cuan caliente o cuan frío se encuentra un objeto.
La temperatura se mide en unidades llamadas grados, por medio de los termómetros, esto se refiere que para medir la temperatura utilizamos una de las magnitudes que sufre variaciones linealmente a medida que se altera la temperatura.
Temperatura es el promedio de la energía cinética de las moléculas de un cuerpo.
fision nuclear solar |
Para una mejor explicación de esta relación lo mostraremos con un ejemplo: si ponemos un recipiente con agua representa la cantidad de calor que un cuerpo sede o absorbe en un instante dado, el nivel que esta alcanza representa su temperatura. Si la cantidad de agua, sube el nivel, esto es, si aumenta la cantidad de calor que posee el cuerpo, aumenta también su temperatura.
Otro ejemplo se nota cuando encendemos un fósforo, se logra una alta temperatura pero bajo contenido calórico.
Una olla con 10 litros de agua tibia tiene baja temperatura y un gran contenido calórico.
La temperatura es independiente de la cantidad de sustancia, el calor en cambio depende de la masa, de la temperatura y del tipo de sustancia.
Distintas Escalas de Temperatura
Las escalas de temperatura fueron desarrolladas por los científicos con el propósito de comunicar y comparar sus resultados. Las dos mas utilizadas son las Celsius y Kelvin pero también hay otras como:
Escala Centígrada:
Se le asigna el valor cero (0) a la temperatura de fusión del agua a presión normal y a 45º de latitud. El intervalo entre dichas temperaturas se divide en 100 partes, cada una de las cuales recibe el nombre de grado centígrado o grado Celsius (ºC ). Las temperaturas inferiores a la de fusión del agua resultan negativas en esta escala.
comparación diferentes escalas de temperatura |
Escala Fahrenheit:
Se le da el valor de 32 a la temperatura de fusión del agua y el valor de 212 a la de ebullición del agua. El intervalo de dichas temperaturas se divide en 180 partes, cada una de las cuales se denomina grado Fahrenheit (ºF).
Escala Reaumur:
La temperatura de fusión del agua se designa por cero (0) y la ebullición del agua por 80, dividiéndose el intervalo entre ellas en 80 partes, cada una de las cuales se denomina grado réaumur (ºR). La ecuación que relaciona las diferentes escalas de temperatura es:
La escala centígrada se usa preferentemente en trabajos científicos y en los países latinos. La escala Fahrenheit es más usada popularmente en los E.E.U.U. y en Inglaterra. La escala réaumur se emplea exclusivamente en los países escandinavos. La experimentación y los razonamientos teóricos han indicado que no es posible lograr temperaturas inferiores a cierta temperatura mínima que recibe el nombre de cero absoluto. A esta temperatura la energía de las moléculas de los cuerpos tiene su menor valor posible. El cero absoluto corresponde en la escala centígrada a una temperatura de -273.16 ºC, usualmente se toma el valor de -273 ºC. Por esta y otras razones, Lord Kelvin (Sir William Thompson) propuso medir las temperaturas negativas o "bajo cero".
Escala Kelvin:
Es la escala absoluta cuyo cero coincide con el cero absoluto y cuyos grados tienen el mismo valor que los grados centígrados. En esta escala el cero absoluto corresponde a 0 ºK, la temperatura de fusión del agua corresponde a 273 ºK y la de ebullición del agua corresponde a 373ºK. La escala absoluta de Kelvin se utiliza mucho en la ciencia.
Escala Rankine:
Es la escala absoluta correspondiente al Fahrenheit, donde el punto cero corresponde a -459.7 ºF.
Comentarios